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Magnetorotational instability (MRI)-driven turbulence and dynamo phenomena are analyzed us-
ing direct statistical simulations. Our apPiOAGNBEENSB SN AeA e HOAeIan

to the second-order cumulants, while a statistical closure approximation is employed to model the
three-point correlators. We highlight the web of interactions that connect different components of
stress tensors—Maxwell, Reynolds, and Faraday—through shear, rotation, correlators associated
with mean fields, and nonlinear terms. We_determine the dominant interactions crucial for the
development and sustenance of MRI turbulence. Our general mean field model for the MRI-driven
system allows for a self-consistent construction of the electromotive force. inclusive of inhomo-
geneities and anisotropies. Within the Tealm of large-scale magnetic field dynamo; we identifyjie

that are
responsible for generating the radial and vertical magnetic fields, respectively. We provide the ex-
plicit (nonperturbative) form of the transport coefficients associated with each of these dynamo
effects. Notably, both of these mechanisms rely on the intrinsic presence of large-scale vorticity

dynamo within MRI turbulence.

I. INTRODUCTION

The origin of angular momentum transport is a cen-
tral problem_in accretion disk theory. It is now widely
accepted that magnetorotational instability (MRI) [1] is
responsible for generating turbulent motions and facili-
tating the outward transport of angular momentum in
accretion disks. For MRI to manifest, the disk must pos-
sess sufficient ionization levels to allow for effective cou-
pling with magnetic field lines. In its original form, it
appears as a linear instability in differentially rotating
flows threaded by vertical magnetic fields. However, a
purely toroidal field is also capable of initiating an insta-
bility [2]. The MRI continues to operate in the nonlinear
regime, and eventually leads to a fully nonlinear, turbu-
lent state [3].

In general, MRI-driven magnetohydrodynamic (MHD)
turbulence requires sufficiently coherent magnetic fields
for sustenance [4]. For a given initial magnetic field con-
figuration, the MRI can be initiated locally, but it has
the opportunity to dissipate the large-scale fields via the
generated turbulence, which then affects the ability of
MRI to further sustain the turbulence. To perpetuate the
turbulent motions, one needs to regenerate and sustain
large-scale magnetic fields against dissipation through a
dynamo mechanism [5-8]. Since the discovery of MRI,
numerous direct numerical simulations (DNS), both lo-
cal [3, 9-12] and global [13-18], have confirmed the sus-
tenance of MRI turbulence along with the coexistence of
large-scale magnetic fields. These studies have demon-
strated that turbulent angular momentum transport is
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primarily driven by the correlated magnetic fluctuations
(Maxwell stress) rather than their kinetic counterpart
(Reynolds stress).

Various physically motivated models have been de-
veloped to describe the mechanism of angular momen-
tum transport in accretion disks. Notably, Kato and
Yoshizawa [19] and Ogilvie [20] derived a set of closed dy-
namical equations describing the evolution of the mean
Reynolds and Maxwell stress tensors in a rotating shear
flow, assuming the absence of any mean magnetic fields.
For the MRI to be operative, Pessah, Chan and Psaltis
[21] developed a local model for the dynamical evolution
of the Reynolds and Maxwell tensors in a differentially
rotating flow, threaded by a mean vertical magnetic field.
All of these models successfully capture the initial expo-
nential growth and subsequent saturation of the Reynolds
and Maxwell stresses. However, an important limitation
of these models is the assumption that the Faraday ten-
sor, denoted as Fy; = (u;b;), vanishes, thereby resulting
in the absence of mean magnetic field generation. Here,
u and b represent the fluctuating components of velocity
and magnetic field, respectively. While these studies rep-
resent valuable foundations for understanding the MRI
mechanism, particularly the angular momentum trans-
port phenomena, they fall short of capturing the practi-
cal aspects of MRI-driven turbulence, primarily due to
the neglect of large-scale dynamos.

In principle, large-scale magnetic fields are expected to
emerge through the stretching and twisting of field lines
by small-scale turbulence. A commonly adopted frame-
work to study large-scale dynamos is mean-field electro-
dynamics [22-24]. Within this framework, the evolution
of mean magnetic fields is described in terms of transport
coefficients derived from statistically averaged properties
of small-scale velocity and magnetic fields. A prominent
mechanism responsible for the amplification of large-scale
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magnetic fields is known as the a-effect [22, 23, 25],
where the small-scale turbulence generates an electromo-
tive force (EMF, represented by & ) that is directly pro-
portional to large-scale magnetic fields, & = al-ij. For
the a-effect to operate effectively, the turbulence must
break statistical symmetry in some way, either through
the presence of a net helicity or through stratification
and rotation. An important part of the dynamo mech-
anism is the Q-effect, which arises from the presence of
large-scale velocity shear commonly found in astrophys-
ical systems under the influence of gravitational forces.
In the Q-effect, shear stretches the mean magnetic fields,
facilitating their amplification and evolution. Specifi-
cally, the Q-effect converts a radial field component into
a toroidal one. However, one of the most challenging
aspects of mean-field theory is to close the dynamo cy-
cle through the sustained generation of poloidal fields
(both radial and vertical components) by mechanisms
that require a detailed understanding. In this context,
the traditional a-effect has demonstrated great success
in flows that lack reflectional symmetry, and its existence
has been well established through numerical simulations
of helically forced turbulence. While stratified shearing-
box simulations of MRI-driven turbulence also show some
support for an a—£2 dynamo, it is possible that a different
mechanism is more fundamental to the evolution of large-
scale magnetic fields in accretion disks [10, 12, 26, 27].

In fact, studies conducted on unstratified, zero-net flux
simulations of MRI turbulence have revealed the pres-
ence of large-scale dynamo action in the absence of an
a-effect [10, 12, 27]. Moreover, in different contexts, it
has been demonstrated that the combined effects of shear
and turbulent rotating convection can give rise to large-
scale dynamo action, where the driving mechanism is dif-
ferent from the classical a-effect [28]. In the context of
the shear dynamo, Yousef et al. [29] showed that forced
small-scale nonhelical turbulence in non-rotating linear
shear flows can lead to the exponential growth of large-
scale magnetic fields. These findings highlight the im-
portance of considering alternative dynamo mechanisms
beyond the traditional a-effect in systems characterized
by shear and turbulence, providing insights into the di-
verse range of processes contributing to the generation
and amplification of large-scale magnetic fields.

The underlying process of dynamo generation is multi-
faceted, as several potential mechanisms have been pro-
posed to explain the generation of large-scale fields with-
out a net a-effect. One such possibility is the ‘stochastic
a-effect’ in turbulent flows, where the mean « coefficients
are zero. In this approach, sufficiently strong fluctuations
of « in interaction with shear can lead to the growth of
mean magnetic fields [30-35]. Another explanation lies
in the ‘shear-current effect’ [36, 37] and the ‘magnetic
shear-current effect’ [38], emerging from the off-diagonal
turbulent resistivity in the presence of large-scale veloc-
ity shear. In the case of the magnetic shear-current ef-
fect, magnetic fluctuations arising from small-scale dy-
namo action can generate large-scale magnetic fields. A

third possibility is the ‘cross-helicity effect’ [39-42]. This
mechanism involves augmenting the induction equation
for the mean magnetic field with an inhomogeneous term
proportional to the product of cross-helicity and mean
vorticity. The interplay of cross-helicity and vorticity
provides an additional avenue for the generation and evo-
lution of large-scale magnetic fields. It has to be noted
that stochastic a-effect and the original shear-current ef-
fect are kinematic in nature and the MRI-driven dynamo
is expected to be intrinsically nonlinear. But also in all
of the above mentioned mechanisms, the role of rotation
has not been considered actively. In differentially rotat-
ing turbulent flows, an EMF proportional to Q x (V x B)
can drive dynamo action, referred to as the € x J or
Rédler-effect [23, 43].

In theoretical investigations of the MRI-driven system,
it was found that turbulence is not required for large-scale
dynamo action [11] and the non-normality in the system
allows for self-coupling of non-axisymmetric modes [44,
45] leading to a nontrivial electromotive force on a quasi-
linear analysis [46]. More recently, a calculation of the
triple correlation term in the small scale magnetic helicity
equation has indicated the possibility of helicity fluxes
leading to localization of helicity in space (rather than
spectrally) and large-scale vorticity features prominently
in the arising new helicity flux [47].

Thus far, the mean-field dynamo and angular momen-
tum transport problems have been approached indepen-
dently in a decoupled manner. The mean-field dynamo
theory has traditionally disregarded the transport dy-
namics, while angular momentum transport theory has
overlooked the evolution of large-scale magnetic fields
[48, 49]. However, the large-scale behavior of velocity
and magnetic fields depends on the interaction at smaller
scales. Moreover, it is crucial to account for the back re-
action of the large-scale dynamics on the small-scale en-
vironments. This inherent complexity renders both the
problems highly nonlinear and poses a substantial chal-
lenge in formulating a comprehensive coupled theory for
MRI-driven MHD turbulence.

Another route to investigating the dynamo problem in
the MRI-driven system (in both stratified and unstrati-
fied domains) is via the measurement of turbulent trans-
port co-efficients in the mean field theory [10, 18, 26, 50—
52]. However, many of these studies use mean-field mod-
els based on homogeneous and isotropic small-scale tur-
bulence, which is not justified for an MRI driven sys-
tem. Others that use a more general mean field model,
employ methods for inversion which are either unsuit-
able for nonlinear systems or set some of the coefficients
to zero which is somewhat questionable or have to deal
with complexity of correlated noise, nonlocality, degen-
eracies, overconstraining, etc. By using direct statistical
simulations with a general model, we have been able to
overcome most of these issues, and are able to directly
determine the terms and transport coeflicients (and their
exact expressions) central to MRI dynamo action.

In this paper, we construct a unified mean-field model



that combines dynamo and transport phenomena self-
consistently, and perform direct statistical simulations
(DSS) in a zero net-flux unstratified shearing box. Our
methodology begins by developing a mean-field model
that consists of a hierarchical set of equations, capturing
up to the second-order cumulants. To close these hierar-
chical equations, we express the third-order cumulants in
terms of second-order cumulants using the CE2.5 statis-
tical closure model, which lies between the second-order
(CE2) and third-order cumulant expansion (CE3) meth-
ods [53]. We also apply the two-scale approach [54] to
model second-order correlators involving the spatial gra-
dient of a fluctuating field. The general nature of our
model allows us to capture the effects of inhomogenieties
and anisotropies in the system. Further it has been useful
to determine directly the dominant terms/effects respon-
sible for dynamo and transport in tandem. This path
allows us to explore the possibilities of developing sub-
grid models which can be used in global simulations and
possibly also in general relativistic MHD simulations of
accretion disks aimed towards understanding data from
Event Horizon Telescope [55]. In order to numerically
solve this model consisting of coupled equations for the
mean field and stress tensors, we develop a special mod-
ule within the PENCIL-CODE [56] framework.

Our unified mean-field model addresses two key chal-
lenges: (a) disentangling the diverse physical processes
involved in sustaining MRI turbulence and dynamo ac-
tivity in accretion disks, and (b) identifying the dominant
mechanisms responsible for generating large-scale mag-
netic fields. We present a comprehensive framework that
elucidates the intricate network of interactions connect-
ing different mean fields and stress components through
shear, rotation, correlators associated with mean fields,
and nonlinear terms. By studying the induction equa-
tion, we investigate the role of different EMFs in the
evolution of large-scale magnetic fields. Our DSS results
demonstrate good agreement with those obtained from
DNS [7, 11]. Specifically, the radial EMF has a resistive
effect, reducing the energy of the azimuthal field. The az-
imuthal EMF, E:'y, generates a radial field, which, in turn,
drives the azimuthal field through the Q-effect. Notably,
E_y is also responsible for generating the vertical magnetic
field. Next, with our model, we construct the EMF for
an MRI driven system. We find that the constructed
EMF is a linear combination of not only the usual terms
proportional to mean magnetic fields and the gradient of
mean magnetic fields, but also the gradient of mean ve-
locity fields, and a nonlinear term. Thus, our EMF is not
just an ansatz but an expression that naturally arises out
of our model. The proportionality coefficients depend on
shear, rotation, and statistical correlators associated with
fluctuating fields. In our search for large-scale magnetic
field dynamo, we identify two crucial mechanisms—the
“rotation-shear-current effect” and the “rotation-shear-
vorticity effect”—that are responsible for generating the
radial and vertical magnetic fields, respectively. Remark-
ably, both of these mechanisms rely on the presence of

large-scale velocity dynamo in the self-sustaining MRI-
driven turbulence.

The paper is organized as follows. In Section II and its
subsections, we present our unified mean-field model for
MRI-driven turbulence and dynamo. Section ITA dis-
cusses the requirements of a high-order closure model
and provides a statistical closure model to facilitate our
analysis. The numerical simulation set-up is described
in Section IIB. In Section III and its subsections, we
present the results obtained from the simulations. Sec-
tion IIT A focuses on phenomena associated with the out-
ward transport of angular momentum and the interplay
of various Maxwell and Reynolds stresses. The role of
large-scale magnetic fields in turbulent transport is also
highlighted. Section III B addresses the large-scale dy-
namo associated with magnetic fields. Different planar-
averaged large-scale fields are distinguished, and the role
of various terms in generating mean magnetic fields is an-
alyzed using planar-averaged induction equations. The
construction of the EMF for an MRI-driven system is
discussed in Section III C, followed by a detailed analy-
sis of the dynamo mechanisms responsible for generat-
ing radial and vertical large-scale magnetic fields in Sec-
tions III D and IITE, respectively. In Section IV, we dis-
cuss our newly discovered dynamo mechanisms, namely
the rotation-shear-current effect and the rotation-shear-
vorticity effect, and provide a comprehensive discussion
comparing them with existing dynamo mechanisms. Fi-
nally, the paper concludes with a summary in Section V.

II. MODEL

We adopt the local shearing box model to investigate
MRI turbulence and dynamo in a three-dimensional, zero
net-flux configuration, employing novel DSS methods. In
order to simplify the analysis, we assume an isothermal,
unstratified, and weakly compressible fluid. The DSS
method has proven to be a valuable computational tech-
nique and has shown promising results. However, apply-
ing the DSS method to study self-sustaining MRI-driven
turbulence presents a significant challenge compared to
forced turbulence, primarily due to the complexity of tur-
bulent flows. The presence of an unlimited number of sta-
tistical properties that cannot be directly calculated from
first principles complicates the analysis. Furthermore, a
closure model is necessary to handle the high-order non-
linear terms of the statistically-averaged equations. Our
investigation begins with a statistical averaging approach
applied to the standard MHD equations, which describe
the mean flow and flow statistics in an accretion disk.
First, we write down the standard MHD equations in a
shearing background in the rotating frame, as given by
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Here, D/Dt = 0/0t — ¢Qxd/dy includes the advec-
tive transport by a uniform shear flow, U = —¢Quxj.
Q = Q2 is the background rotational velocity. The con-
stant ¢ = —dInQ/dIn R; for a Keplerian disk ¢ = 3/2.
The magnetic field B is related to the magnetic vec-
tor potential A by B = V x A, and J = V x B/ug
is the current density, where pg is the vacuum perme-
ability. The other quantities have their usual mean-
ings: U is the velocity, P the pressure, p the density,
1 the magnetic diffusivity, v the microscopic viscosity,
and S;; = %(Um- +U;; — %(Ejv - U) the rate of strain
tensor. We use an isothermal equation of state P = pc?,
characterized by a constant sound speed, c;.

In the conventional mean-field theory, one solves the
Reynolds averaged equations. = We thus consider a
Reynolds decomposition of the dynamical flow variables,
expressing them as the sum of a mean component (de-
noted by over-bars) and a fluctuating component (rep-
resented by small letters): U = U +u, A = A+ a,
and so on. It satisfies the Reynolds averaging rules, i.e.,
a =0, A= A. Here, we consider the ensemble averag-
ing to derive the cumulant equations. For weakly com-
pressible fluids, where the density remains approximately
constant, the mean-field equations in ensemble averaging
can be written as:

DiA; = 5'{4 + Q‘ijjBk +& —nd;, (4)
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Here, S4 = (-SA4,,0,0), and SY = (0,-SU,,0).
& = (uxb); = €;,Fji is the mean electromotive force.
Mij = bibj/uo, Rij = puUuy, and Fz’j = Uibj are the
Maxwell, Reynolds, and Faraday tensors, respectively.
The effect of turbulence on the mean-field evolution is
captured through the mean stress tensors M,;, R;;, and
Fl-j. We require knowledge of the evolution of such stress
tensors to close the mean-field equations (4) and (5).
By subtracting the ensemble-averaged equation from
the total equation, we derive the evolution equations for

the fluctuating velocity and magnetic fields:
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We combine different fluctuating equations and apply
Reynolds average rule to construct the governing equa-
tions for the M;;, R;;, and Fj;. The resulting equations
for the mean Maxwell, Reynolds, and Faraday tensors
are, respectively,
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The left-hand side of these equations describes the lin-
ear dynamics of the respective stress tensors. The terms
Sf;/[ , Sg, and S I represent how the Maxwell, Reynolds,
and Faraday tensors are ‘stretched’ by the gradients
of the background shear flow, U?, respectlvely They
are expressed as SM = —M; kﬁkU — ]kak SR =

ZkakUj + Rjk(i)kUz, and SL}; = — Zk(f?kU]Q + ijakU?
Note that different stress tensors interact with the back-

ground velocity gradient in distinct ways. The terms 7;] ,
7:?; and TF represent the nonlinear three-point terms
that appear in the evolution equations for the Maxwell,

Reynolds, and Faraday tensors, respectively. Mathemat-
ically, they are given by

TM <b bk(‘)kuj + b b Opu; — ukakMU> , (12&)

7_;;% = <uibk8kbj + ’U,jbkakbi — ukakR,»j> y (12b)
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The right-hand side of the stress equations (9-11)
poses significant challenges due to the presence of four
distinct types of terms. These terms include (a) the
triple correlation of fluctuating quantities, (b) second-
order correlations involving the spatial gradient of a fluc-
tuating field, (¢) pressure-strain correlators in the evalu-
ation equations for Rij and Fij, and (d) terms associated
with the microscopic diffusion process. It is essential to
develop closure models for each of these challenging terms
to make progress in our analysis.

A. The Closure Model

In the framework of a cumulant hierarchy, the ex-
pansion of the MHD equations (1-2) results in an in-
finite set of coupled partial differential equations. Due
to the quadratic nonlinearities present in the standard
MHD equations, the first-order cumulant equations for
the coherent components (Egs. 4-5) involve terms that
are second-order, such as the Maxwell, Reynolds, and
Faraday tensors. Similarly, the second-order cumulant
equations (Egs. 9-11) contain terms up to third order,
and so on. Therefore, in order to make progress in the
analysis, it is necessary to select an appropriate statisti-
cal closure that truncates the cumulant expansion at the
lowest feasible order.

Among the well-studied formalisms in DSS, the trun-
cation of the cumulant hierarchy at second order (CE2)
stands out as a simple yet effective approach [57]. In
CE2, all statistics of order greater than two are zero.
This truncation scheme selectively preserves the mean-
eddy interactions in the eddy (or fluctuation) equations
and the eddy-eddy interactions in the mean equations,
while disregarding the eddy-eddy interactions in the eddy
equations. Consequently, CE2 is considered to be weakly
nonlinear or quasilinear. From a theoretical perspective,
CE2 can be interpreted as the exact solution of a linear
model driven by stochastic forces. This method has been
successfully applied to study MRI turbulence and dy-
namo in the zero net-flux unstratified shearing box [58].
In this approach, the mean fields are assumed to depend
solely on the vertical coordinate, thereby simplifying the
system representation. The nonlinearity that is neglected
in CE2 is approximated by incorporating white-in-time
driving noise, allowing for the exploration of essential as-
pects of MRI turbulence and dynamo effects.

The third-order cumulant expansion (CE3) includes
the eddy-eddy interactions in the eddy equations. How-
ever, extending the analysis to third order and beyond
presents technical challenges in deriving and solving the
DSS system as it involves numerous interactions. To
address this complexity, a simplified model called the
CE2.5 approximation has been proposed as a practical
alternative. The CE2.5 approximation makes several key
assumptions to simplify the analysis. First, it sets all

time derivatives for the third cumulants to zero, assum-
ing that the third cumulant evolves more rapidly com-
pared to the first and second cumulants. Second, the
CE2.5 approximation neglects all terms in the equations
for the third cumulant that involve the first-order cumu-
lants. Finally, the fourth-order cumulants are replaced
by an eddy-damping parameter or a diffusion process.
In our statistical closure model for the three-point
interactions, we employ an approach inspired by the
CE2.5 approximation. The nonlinear three-point terms
(Egs. 12a—12c¢) can be expressed as (see Appendix B):

_ 1 — _ — _ — _
7;?4 = E [261 V MRZJ - 262 V MMZJ - 263 \/EMZJ

- 64\/5 (Fij + sz‘) ) (13a)
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where, ¢q, ..., c11 are positive dimensionless constants of
the order of unity, and L represents a vertical character-
istic length (such as the disk thickness or the height of
the simulation box). Throughout our computations, we
have set ¢; = --- = ¢11 = 1. The quantities M and R
denote the traces of the Maxwell and Reynolds tensors,
respectively, while F' = (F2, + F2, + F2,)'/2. It is impor-
tant to highlight that the last term in the 7_;? equation
(Eq. 13b), involving the constant cg, and the last term
in the ’7;5 equation (Eq. 13c), involving the constant ¢11,
correspond to the isotropization terms arising from the
pressure-strain nonlinearity [19, 20, 59]. The pressure-
strain correlation is a third-order quantity, appearing in
Egs. (10) and (11), and necessitates a non-deductive clo-
sure. Henceforth, we incorporate them into the three-
point correlators, 77; Furthermore, various other terms
arising from the three-point correlators have significant
implications. The terms cs,c5, and cg correspond to
the turbulent dissipation of the Maxwell, Reynolds, and
Faraday tensors, respectively. The terms ¢; and ¢, repre-
sent the interaction between the Maxwell and Reynolds
stresses. In terms of energy transfer, the net rate of trans-
fer from turbulent kinetic energy to magnetic energy can
be expressed as L™V M(ciR — ¢oM). The sign of this
expression determines whether the kinetic or magnetic
energy dominates the energy transfer process. Similarly,

)



the terms c¢7; and cg describe the interaction between the
Faraday tensor and its transpose. Finally, the Faraday
tensor interacts with the Maxwell and Reynolds stresses
via ¢4 and c1g terms.

In addition to the three-point correlators, the right-
hand side of the stress equations (Egs. 9-11) contains
terms that are directly proportional to B. These pro-
portionality coefficients correspond to second-order cor-
relators involving the spatial gradient of a fluctuating
field. To proceed with our analysis, it is necessary to close
these terms. To accomplish this, we employ a two-scale
approach [54] to determine the second-order correlators
associated with the spatial gradient. These correlators
can be expressed as (see Appendix C):

By (u;Omb;) = —Tr(B) 7 Fy; + %(B V) Ei;, (14a)
B (ujOmb;) = —Tr(B) I Fy; + %(B -V)E};, (14b)
By (biOmu;) = Te(B)I 1 Fy; + %(B -V)Fj;, (l4c)
By (bjomu;) = Te(B)IT1Fyy + %(B -V)F;;, (14d)
B (wiOpuj) = —Tr(B)I ' Ry; + 1(]_3 - V)R;j, (14e)

By (b;omb;) = Te(B)I ™ M;; + % B-V)M,;. (14f)
Note that Egs. (14e) and (14f) hold for i # j. Here,
we introduce the inverse of length scale as 7! =
5(2/\/B2/uop), where s is a constant. In our compu-
tations, we have set s = 0.25, as physical solutions are
obtained for s < 0.3. However, further studies are re-
quired to determine a unique value of s based on DNS
results. Similarly, we utilize the two-scale approach to
determine terms associated with the microscopic diffu-
sion process present in the stress equations (Egs. 9-11).

B. Simulation Set-up

We have developed a special module within the frame-
work of the PENCIL CODE [56], which is a high-order
(sixth order in space and third order in time) finite-
difference code, to numerically solve the model described
by Egs. (4)-(6), and (9)—(11). This model consists of
a set of 28 coupled partial differential equations, in-
volving variables such as A;, U;, p, ]\Zfij, Rm and Fij.
The numerical simulations are performed on a Carte-
sian grid with dimensions N, x N, x N, and a size
of Ly, Ly, and L, along the three Cartesian directions.
For our simulations, we have employed an aspect ratio
of (Ly : Ly : L,) = (L : L : L), with a resolution
of 2563. The boundary conditions are periodic in the
azimuthal (y) and vertical (z) directions, while being
shearing-periodic in the radial (z) direction. In the code,
all quantities are expressed in dimensionless units, where
length is scaled by L, velocity by the isothermal sound
speed cg, density by the initial value pg, magnetic field

by (uopoc?)'/?, and so on. For convenience, we have set

the reference values as L = py = ¢s = g = 1.

The mean velocity field is initialized with Gaussian
random noise, with an amplitude of 10™%. Similarly,
the initial conditions for the stress tensors, namely the
Maxwell stress, Reynolds stress, and Faraday stress, are
also set as Gaussian random noise with an amplitude of
104, except for the diagonal components of the Maxwell
and Reynolds stresses. To preserve the positive definite-
ness of M;; and R;;, we initialize these stress components
with positive random noise of amplitude 1074,

The set-up we have adopted is similar to the one used
in Ref. [11]. The initial magnetic field configuration is
given by B = Bysin(k,z)2, which can be written in
terms of the vector potential as A = Ajcos(k,r)7, so
that the magnitude of the magnetic field is related to
the vector potential through |BO| = k,Ag, where k, =
27/ L,. We choose a rotation rate of Q = 1 and Ay =
0.005, resulting in kpax/k1 = \/15/16(Q/Ua)/k1 =~ 5.
Here, U A0 = By /+/Hopo represents the initial Alfven ve-
locity, kmax corresponds to the wavenumber associated
with the maximum growth rate predicted by linear MRI
analysis, and k; = 27/L is the wavenumber associated
with the box size L. These choices ensure that the most
unstable mode of the MRI, kp,.x, is well resolved by the
numerical grid. Additionally, the initial conditions sat-
isfy the condition for the onset of MRI, namely f > 1,
where 3 = 24oP/B2 is the ratio of thermal to magnetic
pressure. In our case, 8 ~ 1014 for the maximum val-
ues of the initial magnetic field. With these parameters,
the resulting steady-state turbulence driven by the MRI
exhibits a characteristic root mean square velocity of
Urms ~ 0.1cs. Consequently, the Mach number remains
of the order of 0.1, ensuring that compressibility effects
are negligible. The fluid and magnetic Reynolds num-
ber are defined as Re = UppnsL/v and Rm = Uy L/7,
respectively, where v and 7 represent the microscopic vis-
cosity and resistivity. In our study, we utilize values of
v=32x10"%and n = 8.0 x 107°, yielding a magnetic
Reynolds number of Rm = 1250 and a magnetic Prandtl
number of Pm = Rm/Re = 4.

III. RESULTS

We discuss the results from our fiducial statistical sim-
ulation of the local shearing box MRI system. We pro-
vide an exposition on the problems of turbulent transport
and turbulent large-scale dynamo in different subsections
below. In each subsection, we first provide the time evo-
lution of the relevant quantities. Then we set out to in-
vestigate the sources and sinks involved in the evolution
of the transport terms or the large-scale fields. We show
how the terms in the statistical equations compare with
each other allowing us to deduce the dominant effects. In
this manner, we establish connections between the mean
fields and the cumulants.

In the fiducial simulation used to draw inferences from,



the linear stage is up to t/Torp ~ 5. The total length
of the simulation is about t/T,.s ~ 150, which includes
cyclic patterns in the evolution of the mean fields and
cumulants. However, in this work, we do not address
the cyclic behaviour as we focus on uncovering the main
effects responsible for driving the MRI transport and dy-
namo.

A. Turbulent Angular Momentum Transport

We consider the problem of turbulent transport first
to demonstrate that the results from our statistical sim-
ulations display the standard behaviors that agree with
the theory or direct numerical simulations of MRI tur-
bulence. In the latter part of this subsection, we present
our findings related to the generation of the Reynolds
and Maxwell stresses, previously unexplained. It is worth
noting that existing local models that address the gener-
ation process of these stresses have either neglected mean
magnetic fields [19, 20] or considered only constant verti-
cal magnetic fields [21], thereby disregarding several sig-
nificant interactions.

Consider the evolution of volume-averaged components
of the Maxwell (M;;) and Reynolds (R;;) tensors in
the left and right panels of Fig. 1, respectively. The
xy—components of the stress tensors are mainly responsi-
ble for the (radially) outward angular momentum trans-
port. For the matter in accretion disks to accrete, i.e.,
to lose angular momentum, the sign of the mean total
stress, Wyy = Ryy — My, must be positive. This can be
inferred straightforwardly from the radial component of
the angular momentum flux, —9;(R,; — My;), in Eq. (5)
with ¢ = y and j = . From the Fig. 1, we see that the
components of Maxwell and Reynolds stresses respon-
sible for the outward angular momentum transport are
always negative and positive, respectively, i.e., Mmy <0
and R, > 0. This naturally leads to a net (radially) out-
ward angular momentum flux mediated by total positive
mean stress, me = Rwy — Mmy > 0. Furthermore, the
dominant contribution to the total stress arises from the
correlated magnetic fluctuations, rather than from their
kinetic counterpart, i.e., wa > Rmy, as expected. Note
that the vertically outward angular momentum transport
through Wyz = Ryz — Myz is smaller.

In Fig. 1, we also highlight the turbulent energy den-
sities along three directions. The diagonal components
(zx, yy, and zz) of the Maxwell and Reynolds stresses
indicate the turbulent magnetic and kinetic energy densi-
ties with a multiplication factor of two, respectively. The
total turbulent energy is (M + R)/2, where M = M;; and
R = R;; are the traces of the Maxwell and Reynolds ten-
sors, respectively. As expected, the turbulent magnetic
energy dominates over the kinetic counterpart. In the
magnetic counterpart of the total energy, the azimuthal
component is the most significant one followed by the ra-
dial and vertical contributions, i.e., Myy > Myy > M.,
In the kinetic counterpart of the total energy, the radial

component is the most dominant one followed by the az-
imuthal and vertical contributions, i.e., Ry > Ry, >
R... All of these features are in agreement with exiting
local models [19, 20, 60, 61]. Thus, we are reassured that
our statistical simulations are reliable to use for investi-
gations related to turbulent transport.

Next, we describe the generation mechanism of dif-
ferent components of stress tensors to understand the
turbulent transport in more detail. Below we provide
the comprehensive web by which the stress components
connect to each other through (i) shear, (ii) rotation,
(iii) mean fields, (iv) other small-scale correlators, and/or
(v) nonlinear three-point terms. In Fig. 2, we plot the
volume-averaged terms that appeared in the equations
for Maxwell (Eq. (9)) and Reynolds (Eq. (10)) stresses.
In next few paragraphs, we compare the amplitude and
phase of the various terms in these equations to work
out the chain of production leading to efficient turbulent
transport.

Those readers who are interested in the final summary
immediately can skip to the last paragraph in this sub-
section and/or to a summary schematic in Fig. 4.

To understand the process of outward angular momen-
tum transport, we examine the time evolutions for the
rx—, ry—, and yy—components of stress tensors. This is
because the xy—components of stress tensors are directly
connected to the xx— and yy—components of stress ten-
sors via shear and/or rotation (more specifically, Coriolis
force appears in the Reynolds stress equations). Since
M, is positive throughout the evolution, the positive
term in 8,5MM acts as a source, whereas the negative
term behaves like a sink. The same is true for all the
stress tensors, which are positive throughout their evo-
lution. For negative M,,, the roles of different terms
are opposite: the positive term in 8thy acts as a sink,
whereas the negative term behaves like a source.

The upper panels of Fig. 2 are for the Maxwell stress:
(a) Mgy, (b) My, and (c¢) My,. In the evolution of the
latter two, M,, and M,,, the shear terms (solid blue
line) act as the dominant source term, whereas the non-
linear three-point terms (dashed red line) act as the sink.
Here, the “stretching” of the positive stress component
M, via the shear produces M,, at a rate of —g€2. This
renders M:,;y negative. Similarly, shear acts on ]\mey to
produce the positive stress component J\nyy at a rate of
—2¢Q2. There is no shear term in the time evolution of
M,,. Thus, it is evident that the turbulent transport
via —sz can not work with Keplerian shear alone—
M, component is needed for Keplerian shear to act on.
The generation mechanism of M, is critically important
here. For M,,, the dominant source term is By (b, Ox )
(dash-dotted green line) with k£ = y (left panel of Fig. 3).
The nonlinear three-point term (dashed red line) acts as
the dominant sink. The other two subdominant terms,
one proportional to 9 U, (dotted olive line) and the other
proportional to Oy B, (dotted magenta line), behave like
a source and a sink, respectively.

The lower panels of Fig. 2 correspond to the Reynolds



o2 — S m Ny
W % iy
0.201 LY i \
F) \ “a Y
A ‘-«\ rd kY
5 0.151 i, 7 N
| . i
i N f'."\‘\ .
0.104 ,' ,J\" J ‘.,,,-\ Mw."u RN
1 peny e smmme =™ : R Nees
I o E
0.00 1A= s e T i, e
T T T T T T T T
0 20 40 60 80 100 120 140
t/ Torb

0.204 — R Re @,g
Ray = Ry, R.. ™
i P
5 il L
b fi ﬁ.u'.’{k\}“&'g
= ey ’r\"‘"ﬂ .(: IN&\L\‘ [ "J"" ;\} Ii‘k|1. hY -
RS 0.10 i i
0.054
0.004 ~.
T T T T T T T T
0 20 40 60 80 100 120 140
t/ Torb

FIG. 1: (Color online) Time-evolution of the volume-averaged Maxwell (left panel) and Reynolds tensors (right panel).
The zz—, zy—, xz—, yy—, yz— and zz—components are distinguished by dashed blue, solid red, dotted brown, dash-
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FIG. 2: (Color online) Time-evolution of individual terms appeared in the volume-averaged equations for Mazwell stress
(upper panels) and Reynolds stress (lower panels) to explain the turbulent angular momentum transport problem.

Different panels correspond to different stress components: upper panels—(a) M., (b)

panels—(d) Ryz, (€) Ray, (f) Ryy-

stress: (d) Rgy, (€) Ry, and (f) Ryy. For Reynolds
stress, shear acts similarly as in the case of Maxwell
stress but with an opposite sign. In addition, the Coriolis
force plays a significant role in the evolution of Reynolds
stresses. The “stretching” of the positive stress compo-
nent R, produces Rmy via shear at a rate of ¢€2. How-
ever, Coriolis force makes the positive stresses, R,, and
Ryy, act oppositely in the evolution of Rwy with the same
weighting factor of 2€). Since g < 2, the combined effects
of shear and Coriolis force make the term with R, (dash-
dotted cyan line) behave as a sink in the evolution of R,
The nonlinear three-point term (dashed red line) acts as

M,

Ty

(¢) My, and lower

a sink here as well. Hence, the term with R, is the only
source term (solid blue line) in the R, evolution via the
Coriolis force. This finding is illustrated in Fig. 2(e). In
Fig. 2(d), for R,,, the source term is 4QR,, (solid blue
line) arising through the Coriolis force, whereas the non-
linear three-point term (dashed red line) acts as a sink.

Finally in Fig. 2(f), we see that the shear acting on
Rwy produces Ryy at a rate of 2¢Q2. However, the term
with Rmy, overall, acts as a sink in the evolution of Ryy.
Since ¢ < 2, the combined effects of shear and Coriolis
force make the term with R, behave as a sink (solid blue
line). Consequently, the question that arises is how is Ryy
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FIG. 3: (Color online) The time-evolution of specific terms, which are proportional to the mean magnetic fields and
the gradient of mean magnetic fields, is observed in the volume-averaged equations for M,, (left panel) and Ryy
(right panel), respectively. These terms are analyzed to explain the interconnection between the turbulent angular
momentum transport and mean field dynamo. This analysis serves as a continuation of the findings presented in

Fig. 2.

generated. We find that the most dominant source terms
in the Ryy evolution are the nonlinear three-point term
(dashed red line), the term associated with the gradi-
ent of the azimuthal magnetic fields, QF;,,CakBy (dotted
magenta line) with k& = z (right panel of Fig. 3). The
other two subdominant terms, one proportional to By
(dash-dotted green line) and the other proportional to
O,U, (dotted olive line), behave like a source and a sink,
respectively.

The overall findings associated with the turbulent
transport are summarized schematically in Fig. 4. We re-
mind the reader that we are able to delineate this chain of
production because of the structure of our model being
used in this statistical simulation which helps in mak-
ing the connections directly between mean fields and the
cumulants. The stretching of M,, via shear produces
sz, whose stretching by shear further produces Myy.
The large-scale field (here, B,) acts in conjunction with
(byOru,) to generate M,, (this can be interpreted es-
sentially as tangling of the mean magnetic field leading
to the generation of small-scale fields). For the Reynolds
stress, the Coriolis force is responsible for generating R,
from ny, and Rmy from Ryy. The outcome of nonlinear
interactions between M,, and R,, via the three-point
term is the formation of R, from M,,. The other dom-
inant source term for Ryy is the term proportional to
the radial gradient of the mean azimuthal magnetic field.
Hence, turbulent transport is not possible without large-
scale fields, i.e., the mean-field dynamo mechanism is nec-
essary.

B. Large-scale Dynamo

We begin by presenting the overall evolution of the
relevant quantities, namely the mean magnetic and ve-
locity fields, both as volume averages (of the energy) and

.................

= Stretching by background shear
= Twisting by the Coriolis force

; Contribution from mean B-fields
Nonlinear interaction

.................

...............

FIG. 4: (Color online) A schematic representation of the
MRI-driven turbulent angular momentum transport. Dif-
ferent arrow colors correspond to the paths by which the
stress components connect to each other through shear,
rotation, mean fields, other small-scale correlators, and
nonlinear three-point interactions. Note that we have
highlighted only the dominant source terms.

planar-averages. Then we compare the evolution of the
different terms in the dynamical equations for the planar-
averaged large-scale magnetic fields, to determine which
components of the EMF are important for the MRI large-
scale dynamo. Thereafter, we specify how we can recover
a general expression for the y and z-components of the
EMF from our model equations in Section III C. We find
that a given component of the EMF is a linear combina-
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FIG. 5: (Color online) Time-evolution of volume aver-

aged large-scale fields Byys (solid red curve) and Urns
(dashed blue curve) are shown. The zoomed-in part in-
dicates the initial growth to the early saturation phase.

tion of terms proportional to mean magnetic fields, the
gradient of mean magnetic fields, the gradient of mean
velocity fields, and a nonlinear term. With expressions
for the EMFs in hand, we set out to investigate the con-
tribution of the various terms to determine the domi-
nant dynamo effects. To do so, we first examine volume-
averages of the terms in time windows from both linear
and nonlinear regimes, to get a global picture. Next,
we examine the planar average of various terms to study
the behaviour locally in space. In the latter analysis,
we uncover a more sophisticated behaviour of the large-
scale dynamo. But overall, we find both types of analysis
lead to the same conclusions. The EMF analysis for ra-
dial large-scale field generation is in Section III D and for
vertical large-scale field generation is in Section IITE.

1. Volume averaged large-scale or mean field energies

Consider the evolution of volume-averaged large-scale
magnetic and velocity fields. Fig. 5 shows the time evo-
lution of the root-mean-square (rms) velocity (Upys) and
magnetic (Bns) fields. We find that the MRI-driven
turbulence hosts both the large-scale dynamo of velocity
and magnetic fields. The amplitude of By, dominates
over that of Ums throughout the entire duration of our
longest simulation run, spanning approximately 150 or-
bits. The zoomed-in view of the initial growth to the
early saturation phase of the large-scale fields is also de-
picted in Fig. 5. The initial growth phase of both fields
is observed up to a time of t/To, ~ 5.5. Following this
initial growth phase, the fields settle into a steady state,
indicating the saturation regime.

Next, we consider the volume averaged energy den-
sity associated with large-scale velocity and magnetic
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FIG. 6: (Color online) Time-evolution of volume aver-
aged large-scale kinetic and magnetic energy densities
(multiplied by two) are shown in the upper and lower
panels, respectively. The energy associated with the z—,
y—, and z—components are distinguished by dashed red,
solid cyan, and dotted yellow lines, respectively. The
brown dash-dotted lines refer to the total energy densi-
ties.

fields, £ (pU?) and %(B?), respectively. Fig. 6 shows the
time evolution of the large-scale kinetic (upper panel)
and magnetic (lower panel) energy densities with a mul-
tiplication factor of two. Fig. 6 also demonstrates the
contribution from the three components of the fields.
Important to note that the large-scale magnetic energy
dominates over the kinetic one, indicating that the MRI
dynamo in accretion disks is characterized by super-
equipartition of magnetic energy relative to kinetic en-
ergy. Most of the contribution to the large-scale magnetic
energy arises from the toroidal mean magnetic field, By,
while the radial and vertical components of the mean
magnetic field are of similar magnitude. In large-scale
velocity fields, all three components share almost similar
magnitudes. Below we explore the generation mechanism
of different large-scale magnetic field components exten-
sively. It may be interesting in future work to examine
the generation process of U (i.e., the vorticity dynamo)
in more detail.

2. Planar averaged large scale or mean fields

In order to understand the behaviour of the mean fields
locally in space, we perform planar averages. We consider
three different planar averages, r—y, y—z, and x—z aver-
aging, to determine the mean magnetic fields B(z) or
<B>(a:,y)a B(z) or <B>(y,z)a and B(y) or <B>(a:,z) respec-
tively. In the x—y averaged case, the generated field com-
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FIG. 7: (Color online) The time evolution of planar-
averaged root-mean-square large-scale magnetic fields is
shown. The planar averages are performed along three
different planes, z—y, y—z, and z—z, denoted by the solid,
dashed, and dotted lines, respectively. Additionally, we
perform further averaging of the root-mean-square field
over the remaining third direction.

ponents are B, (z) and B,(z); where B,(z) vanishes to
maintain the divergence-free condition. Similarly, B, (z)
in y—z averaging and By (y) in 2—2 averaging are zero.
In Fig. 7, we present the time evolution of the root-
mean-square planar-averaged fields. To obtain these
quantities, we first square the planar-averaged fields.
Then we perform further averaging over the remaining
third direction and then take the square root. The most
prominent large-scale field observed is By (solid orange
line), resulting from the z—y-averaging. Notably, in the
saturation regime, the rms value of B, is around four
times greater than that of B, (solid blue line). The y-z
averaging reveals significant By as well, represented by
the dashed green line. The y-2 averaged B, (dashed red
line) at the beginning of the growth phase reflects the
initial condition of B, = By sin(k,z). During the satura-
tion stage, the y—z averaged fields show that |B,| is ap-
proximately one order stronger compared to |B,|. Con-
versely, when applying the x—z averaging (represented
by the dotted lines), resulting mean fields B, and B, do
not exhibit a dynamo growth and further decay to small
values. The weakness of z—z-averaged fields renders the
MRI-generated large-scale fields largely axisymmetric.

We then shift our focus to the most-studied large-
scale magnetic fields B,(z) and B,(z), obtained from
r—y-averaging. Fig. 8 illustrates their temporal evolution
along the abscissa and spatial variation along the ordi-
nate, with the color scale representing the field strengths.
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FIG. 8: (Color online) The z-y-averaged magnetic fields,
Bg(z) and By(z), are shown on the top, and bottom pan-
els, respectively.

We identify three distinct stages in this evolution: (a) the
initial growth phase extending up to t/To, ~ 5.5, (b) the
intermediate or initial saturation phase from ¢/Ty, ~ 5.5
to t/Tory, ~ 25, and (c¢) the fully nonlinear saturation
phase after t/Ty,1, 2 25. Notably, the appearance of short
dynamo cycles during the intermediate phase indicates a
quasi-linear nature of the dynamo.

To understand the MRI dynamo mechanism, we re-
quire both z—y and y—z averaging (given the significant
mean fields arising from both of these planar averages).
Here, we present the time evolution of the mean field
equations in both kinds of averaging. The mean field
equations in x—y averaging are given by

OBy = —0,&, — U,0,B, + B,0,U,,
01B, = —qQB, + 0., — U.0. B, + B.0.U,.

(15a)
(15b)

The mean field equations in y—z averaging are given by

0,8, = —0,&. — U,0,B, + B.0,T,,
0,B. = 0,8, — U0, B. + B.0,T..

(16a)
(16b)

Here, the main contributions arise from the shear term
(—q2B,), the advection term (U - VB), the stretching
term (B-VU ), and the different components of the EMF:
‘c/;w = (Fyz - Fzy)a gy = (sz - sz)7 and 52 = (Fwy -
F,;). The shear term only appears on the z—y averaged
azimuthal field evolution equation. It will not operate in
the y—z averaged azimuthal field equation because of the
divergence-free magnetic field condition, i.e., (Bz)(y,z) =~
0. To study the contribution of each term to the evolution
of the mean magnetic fields, we multiply B; on both sides
of the 9, B; equations. The resultant individual terms of
equations in B,;0,B; are shown in Figs 9 and 10. Here,
we use three different terminologies to describe the role
of each term: the ‘source’-term has positive contributions
throughout, the ‘sink’-term contributes negatively, and



the ‘dual’-term can be either positive or negative with
time.

In Fig. 9, we examine the behaviour of the individ-
ual terms in Egs. (15) and (16) in time, for both x—y
(top panels) and y—z averaging (bottom panels). These
terms are evaluated at z = —0.15 (top panels) and at
x = —0.15 (bottom panels), for z—y and y—z averaging,
respectively. For all the cases, the corresponding advec-
tion and stretching terms are negligible. The x—y aver-
aged mean field B,(z) (top left panel of Fig. 9) fully
arises from the vertical variation of the azimuthal EMF,
&,. On the other hand, the field B, (z) (top right panel of
Fig. 9) results from a combination of the shear term and
the vertical variation of the radial EMF, &£,. The shear
term acts as a source (traditionally, known as the -
effect), whereas the radial EMF has a sink effect. In the
y—z averaged analysis, both B,(z) and B,(z) arise due
to their respective EMF terms in the induction equation:
B, (z) arises from the radial variation of £, (bottom left
panel of Fig. 9), whereas B,(z) arises from the radial
variation of €, (bottom right panel of Fig. 9). The sharp
decay of B, (x) at the beginning indicates the destruction
of the initial field configuration B, = By sin(k,x).

Next we examine the behaviour of the terms in
Egs. (15) and (16) locally in space instead. In Figs 10 and
11, we show the individual terms in Egs. (15) and (16),
for both x—y (top panels) and y—z averaging (bottom
panels) as function of z and z, respectively. Fig. 10 cor-
responds to the MRI growth phase, evaluated at t /Ty, ~
5, and Fig. 11 corresponds to the fully nonlinear satura-
tion regime, evaluated at t/Top ~ 97. We use the same
line style and color for individual terms as that in Fig. 9.
The overall conclusions remain the same as discussed in
the previous paragraph. The azimuthal EMF, gy, gen-
erates the field B, (z) (top left panel of Fig. 10), which
in turn drives B, (2) (top right panel of Fig. 10) through
the Q-effect. The radial EMF, &, has a sink effect, re-
ducing the energy of By (). In the nonlinear regime, the
radial EMF is seen to dominate over the shear term at
the given instance in time, and hence the field B, (z) de-
cays at that instant (top right panel of Fig. 11). In y—2
averaging, both By(z) (bottom left panel of Figs 10 and
11) and B.(x) (bottom right panel of Figs 10 and 11)
arise due to their respective EMF terms in the induc-
tion equation. The contribution from the advection and
stretching terms involving only mean fields are negligible
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for all the cases. Thus, we find that the behaviour of all
the terms (in Eqgs. 15 and 16) locally in time is consistent
with that locally in space.

In summary, the EMFs gy and &, play significant roles
in dynamo, whereas &, acts like a sink on B, (z). To find
the solution to the MRI dynamo problem, we have to
formulate the key components of the EMF: Sy and &,.

C. Construction of the Electromotive Force

In traditional mean-field dynamo theory, the turbulent
electromotive force (EMF) is commonly expressed as a
linear combination of the mean magnetic field and its
derivatives:

& = aiyBj + BijkBj ke (17)

where the tensor components a;; and 8;;, are known as
turbulent transport coefficients. However, this assump-
tion of expansion solely with respect to the mean mag-
netic field may not be sufficient [62], as the form of the
EMF directly emerges from the assumption of U = 0,
disregarding the influence of mean velocity fields. In the
context of MRI-driven turbulence, both the large-scale
vorticity dynamo and the large-scale magnetic field dy-
namo are integral components of the overall turbulent
behavior [11]. Therefore, in constructing the EMF, it is
essential to account for the effects of mean velocity fields
alongside the mean magnetic field. Another challenge
in mean-field dynamo theory is determining the numer-
ous unknown transport coefficients involved in the mean
EMF. Extracting data from simulations, specifically B
and &, allows for the estimation of these coefficients.
However, measurement results often suffer from high lev-
els of noise. To improve the signal and reduce the noise,
certain coefficients are typically assumed to be negligible
[10, 18, 38]. However, the appropriateness of such fitting
assumptions has been a subject of debate [50].

To overcome both limitations, we propose a novel ap-
proach that constructs the key components of the EMF
in a self-consistent manner without making any assump-
tions. We utilize the interaction terms arising from the
Coriolis force and background shear in the evolution
equations for the Faraday tensors to construct the EMF.
More detailed information can be found in Appendix A.

Specifically, the azimuthal EMF, &,, can be expressed as

- Q)sz} akUy

1. ~ _
; {qRyk +(2- q)Myk} OB,

) —(2—9q) ((uzakuy> + <bya’“b'2>> } + 7;] . (18)

Hop
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FIG. 9: (Color online) The top two panels show the terms from z—y averaged mean field equation for B,(z) and
By(z) on left and right, respectively. The bottom two panels show the terms from y—z averaged mean field equation
for By(z) and B, (z) on left and right, respectively. These are evaluated at 2 = —0.15 (top panels) and at z = —0.15
(bottom panels), for z—y and y—z averaging, respectively. To understand the contribution of each term to the evolution
of mean magnetic fields, we multiply B; on both sides of the d; B; equations. The solid blue curve is for the time
derivative of the mean field, the dashed black curve is for the corresponding EMF term, the red dash-dotted curve is
for the shear term (—¢2B,), and the green dotted and orange dash-dotted lines are, respectively, for the advection

and stretching terms involving mean fields.

It is worth noting that the EMF consists of terms that are
proportional to: (a) mean magnetic fields, (b) gradient of
mean magnetic fields, (¢) gradient of mean velocity fields,
and (d) nonlinear three-point terms (7). The propor-
tionality coefficients depend on factors such as rotation,
shear rate, and the correlators associated with different
fluctuating fields. Similarly, the vertical component of
the EMF, &£,, can be derived, and its mathematical ex-
pression is available in Appendix A.

For a comprehensive understanding, we present the
individual components of the EMF obtained from the
volume-averaged analysis, as depicted in Fig. 12. It is
evident that the EMF components &£, and gy exhibit a
cyclic pattern over time, with alternating positive and
negative values. In contrast, the EMF component &,
consistently remains negative throughout the entire du-
ration of the analysis.

D. Generation of Radial Magnetic Fields

We have seen that the z—y averaged mean field B, (z)
is solely determined by the vertical variation of the az-
imuthal EMF, Sy_ The main challenge in mean-field dy-
namo theory is to identify the term responsible for gener-
ating B, via S_y. In Fig. 13, we present individual terms
of &, (Eq. 18) in the MRI growth to the early saturation
phase. We compute these terms at z = —0.15. To as-
sess the contribution of each term in the evolution of B,
(Eq. 15a), we multiply —B, on both sides of the equa-
tion for 9,€,. Two crucial curves that aid in determining
whether the magnetic field is growing or decaying with
time are the EMF term, depicted as the dashed black
line with star markers, and B,0;B,, illustrated as the
dash-dotted red line with tri-down markers. We observe
that the field B, (z), represented by the dotted blue line,
undergoes amplification during the growth phase (with
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FIG. 10: (Color online) The top two panels show the terms from z—y averaged mean field equation for B, (z) and
By(z) on left and right, respectively. The bottom two panels show the terms from y—z averaged mean field equation
for B (z) and B, (x) on left and right, respectively. These are evaluated at ¢/, ~ 5. To understand the contribution
of each term to the evolution of mean magnetic fields, we multiply B; on both sides of the 9,B; equations. The solid
blue curve is for the time derivative of the mean field, the dashed black curve is for the corresponding EMF term,
the red dash-dotted curve is for the shear term (—q¢QB,), and the green dotted and orange dash-dotted lines are,
respectively, for the advection and stretching terms involving mean fields.

negative growth and in opposite phase to By (z), shown
as the dotted orange line) in the range of t/To, = 5 to
5.6. Subsequently, it decays, leading to saturation. The
primary driver for the growth of B, is the term propor-
tional to akBy (depicted by the solid grey line with circle
markers). In particular, the ¥ = z component of this
term plays a crucial role, as illustrated in Fig. 13b. Dur-
ing the growth phase, there are two additional source
terms. Omne originates from the term proportional to
Ok B. (illustrated by the solid blue line) with k = z (see
Fig. 13c), while the other arises from the term propor-
tional to 0;U, (represented by the solid green line) with
k = x (Fig. 13d). In the initial decay phase (around
t/Tor, =~ 5.6 to 7), the most significant role is played
by the nonlinear three-point term (depicted by the solid
olive line with triangle markers). The term proportional
to 0xU, with k = x (Fig. 13d), which previously acted
as a source during the growth phase, now acts as a sink.
These contributions collectively lead to the saturation of
B,. Notably, the terms proportional to B; are negligible
in both the growth and initial decay phases.

Next, we take time averages from t/To, = 5 — 5.5, of

all the terms considered in the previous figure (Fig. 13),
in the MRI growth phase and show their behaviour lo-
cally in space. Such a study can explain how the z—y av-
eraged field B,(z) is generated in detail. In Fig. 14, the
individual terms of 825_y vary in z, and we use the same
line style and color for each term as that in Fig. 13. We
again multiply — B, (z) on both sides of the 9., equation
to understand the contribution of each term to the evo-
lution of B,, following Eq. (15a). We find again that the
dominant source term is the term proportional to 8kBy
with k = z (top middle panel of Fig. 14). Some contri-
butions from the terms proportional to 9y B, with k =
(bottom middle panel of Fig. 14) and 0,U, with k = =
(bottom right panel of Fig. 14) also arise in the growth
of B,(z), but they are not acting as sources throughout
z.

Next, we study the dynamo in nonlinear regime. Using
Fig. 15, we describe the mechanism by which the field
B.(z) grows and decays alternatively, via the vertical
variation of £,. We have seen that the azimuthal EMF,
gy, maintains a cyclic nature, i.e., the magnitude of gy
can be either positive or negative at different instances of
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FIG. 11: (Color online) The top two panels show the terms from z—y averaged mean field equation for B, (z) and
By(z) on left and right, respectively. The bottom two panels show the terms from y—z averaged mean field equation for
B, (x) and B, (x) on left and right, respectively. These are evaluated at ¢/To., ~ 97. To understand the contribution
of each term to the evolution of mean magnetic fields, we multiply B; on both sides of the 9, B; equations. The line
style and color for each term is the same, as shown in Fig. 10.

FIG. 12: (Color online) The time evolution of the volume-
averaged EMF is presented. The dash-dotted red, solid
blue, and dashed green lines correspond to the x—, y—,
and z—components of EMF, respectively. To help visual-
isation, the z—component &, has been scaled down with
a factor of 0.3.

time (e.g., Fig. 12). Here, we perform the z—y averaged
analysis at different times when gy can be either posi-
tive or negative, to obtain an overall behaviour of both,
growth and decay of B,(z), locally in space. In particu-
lar, we would like to know whether the terms which were
responsible for growth of the large-scale fields continue
to persist in the nonlinear regime. The computations are
performed at t/To, ~ 80 (top left), ¢/Tom ~ 97 (top
right), ¢/Toe, ~ 43 (bottom left), and t/Tom, ~ 107 (bot-
tom right). The top two panels of Fig. 15 correspond to
the negative gy, whereas the bottom two panels are for
the positive £,. In the top left panel of Fig. 15, we see
that the field B, (z) grows along z > 0. The term propor-
tional to 9, U, (solid green curve) with k = z (not shown
here) is the dominant term responsible for the growth
of B,(z). The other two source terms are those pro-
portional to 9B, (solid grey curve) with k& = z (not
shown here) and 9;U, (solid orange curve) with k& = z
(not shown here). The nonlinear three-point term (solid
yellow /light-green curve) and the term proportional to
Ok B, (solid blue curve) with k = x (not shown here) be-
have like sinks. The terms proportional to B; (solid pur-
ple, brown, and pink curves for i = x,y, and z, respec-
tively) are negligible. In the top right panel of Fig. 15,
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FIG. 13: (Color online) (a) The left panels depict the terms arising from the vertical variation of the azimuthal EMF
(Eq. 18) responsible to generate the x—y-averaged field B, (2) during the growth and initial saturation phase of MRI.
To improve visual clarity, the numerous terms associated with the EMF are distributed across two left panels. In
order to assess the individual contributions of these terms to the evolution of B, (z), we multiply —B,(z) on both
sides of the 8z<‘fy equation (as described by Eq.15a). These are evaluated at z = —0.15. The curves represent distinct
terms: the dash-dotted red curve corresponds to B,0;B,, the dashed black curve corresponds to the corresponding
EMF term, the solid grey curve corresponds to the term proportional to 8kBy, the solid blue curve corresponds to
the term proportional to 9y 5., the solid orange curve corresponds to the term proportional to 8k(_fy, the solid green
curve corresponds to the term proportional to d,U., the solid olive curve corresponds to the nonlinear three-point
term, the solid red curve corresponds to the time derivative of the Faraday-tensor terms, and the solid purple, brown,
and pink curves correspond to the terms proportional to the z-, y-, and z-components of the B fields, respectively.
Notably, we have utilized markers only for the most significant curves. The middle and right panels illustrate the
terms proportional to different components of the field gradients: (b) the term proportional to 8kBy, (c) the term

proportional to 9y B., (d) the term proportional to 8kUy, and (e) the term proportional to d;U.,.

the field B, (z) is seen to be decaying along all z. The
nonlinear three-point term plays a significant role in re-
ducing the energy of B,. The term proportional to 9;U,
(solid orange curve) with & = x (not shown here) acts

like a sink here also. The terms proportional to B are
negligible.

In the bottom two panels of Fig. 15, we see that the
field B,(z) grows and decays cyclically in z. In both
cases, the overall behaviour of different terms remains
the same as before. Again, the term proportional to 9 B,
(solid grey curve) with k = z (not shown here) acts like
a source throughout the z, whereas the terms associated
with 9y, B, (solid blue curve) with k = z (not shown here)
and time-derivative (solid red curve) have sink effects
mostly. There are two significant behaviours in these
two cases. (a) The terms proportional to B; (solid pur-
ple, brown, and pink curves for ¢ = x,y, and z, respec-
tively) are not negligible here, unlike previous cases. The
term proportional to B, (solid brown curve) appears to
follow the signal, i.e., the term B,0;B,. On the other
hand, the term proportional to B, (solid purple curve)
appears opposite to the signal. (b) The nonlinear three-

point term (solid olive line) behaves like either a source
or a sink. Similar to the term proportional to By (solid
brown curve), the nonlinear term also follows the pattern
of B,0,B, with much higher amplitudes.

In summary, the growth and the nonlinear saturation
of the x—y averaged field B, (z) arises through the vertical
variation of the azimuthal EMF, i.e., 8Z5y. The EMF gy
consists of four different types of terms proportional to
the mean magnetic fields, the gradient of mean magnetic
fields, the gradient of mean velocity fields, and nonlin-
ear three-point terms. The proportionality coeflicients
are functions of the shear rate, rotation, and correlators
associated with different fluctuating fields. The term pro-
portional to 9,B, plays a significant role in the growth
of B, both in the growth and saturation regimes. In the
MRI growth regime, the term proportional to 9, B, also
grows B,(z). The decay of B, is primarily due to the
three-point term, which is the reason for the nonlinear
saturation of B,. The roles of certain terms depend on
the sign of £,. In the MRI nonlinear regime, the term
proportional to 8, U, helps in the growth of B, for &, < 0,
whereas it has a negligible sink effect for Ey > 0. The
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FIG. 14: (Color online) (a) The left panels present the terms arising from the vertical variation of the azimuthal
EMF (Eq. 18) that contribute to the generation of the x—y-averaged field B,(z) in the MRI growth phase. These are
obtained through time averaging from ¢/T,,, = 5 — 5.5. To enhance visual clarity, the numerous terms associated
with the EMF are distributed across two left panels. To evaluate the individual contributions of these terms to the
evolution of B, (z), we multiply —B,(z) on both sides of the 9., equation (as described by Eq.15a). The line style
and color for each term are consistent with those in Fig. 13. It is worth noting that markers are employed only for
the most significant curves. The middle and right panels illustrate the terms proportional to different components of
the field gradients: (b) the term proportional to 9y By, (¢) the term proportional to 9y B,, (d) the term proportional

to 0yU,, and (e) the term proportional to 9 U..

term proportional to By is negligible for ffy < 0, whereas
it has a dual effect (i.e., both source and sink at the same
time but at different points in space) following the pat-
tern of the signal, i.e., the term B,0;B;, for &, > 0. The
nonlinear three-point term acts like turbulent resistivity
for E_y < 0, whereas it has a dual effect acting as both
source and sink for é_’y > 0.

Next, we explore the term proportional to 8, B, of the
EMF &, (see equation 18) in more detail. The pro-
portionality coefficient carries physical insight for the
B,(z) generation mechanism. As the coefficient is a func-
tion of shear rate, rotation, and correlators associated
with kinetic and magnetic fluctuations (more specifically,
R,, and M., respectively), the mechanism is named as
‘rotation-shear-current effect.’

rotation-shear-current effect: The dynamo mech-
anism responsible for generating B,(z) from B,(z)
through the rotation-shear-current effect relies on the
presence of correlators M., and R,,. Understanding
the formation process of these correlators is crucial for
establishing the connections between the dynamo pro-
cess and the angular momentum transport in the system.
To investigate this, we examine the individual terms ap-
pearing in the evolution equations for M., (Eq. 9) and
R.. (Eq. 10), which are displayed in the upper panels
of Figs. 16 and 17. Specifically, Fig. 16 corresponds to
the MRI growth phase, obtained through time averaging

from t/To, = 5 — 5.5, while Fig. 17 represents the non-
linear phase, evaluated at t/T,,, = 20. Physically, M.,
and R.. represent turbulent magnetic and kinetic energy
densities (multiplied by two) in the vertical components
of the fields, respectively. Consequently, both M., and
R.. remain positive throughout. It makes the positive
term in 0,M,, as a source, whereas the negative term
behaves like a sink. The same holds for the terms in
O;R... By identifying the dominant source terms from
the upper panels of Figs. 16 and 17, we examine their
components in the lower panels of the same figures. We
see that the dominant source term for M, is the stretch-
ing term, 2M,,0,U, (blue dotted line in Figs. 16a and
17a) with k = x (Figs. 16¢ and 17¢), whereas the non-
linear three-point term (red dashed line in Figs. 16a and
17a) behaves as the dominant sink. This behavior re-
mains consistent in both the growth and nonlinear phases
of turbulence. Similar processes are seen for the R,,
evolution—the stretching term, —2R.,0;U. (blue dotted
line in Figs. 16b and 17b) with k = = (Figs. 16d and 17d),
acts as a source, whereas the nonlinear three-point term
(red dashed line in Figs. 16b and 17b) turns out to be
the sink as usual. Thus, the presence of a mean (ver-
tical) velocity field is necessary for the operation of the
rotation-shear-current effect. In other words, mean mag-
netic field dynamo is rendered inoperative without mean
velocity field dynamo. Further exploration of the genera-
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FIG. 15: (Color online) The terms responsible for generating the x—y averaged mean field B,(z) via the wvertical
variation of &, in the MRI nonlinear regime. The four panels correspond to the four different instances of time:
t/Torn ~ 80 (top left), t/Tom, ~ 97 (top right), t/Tom, ~ 43 (bottom left), and ¢/Tom, ~ 107 (bottom right). The
azimuthal EMF, é_’y, is negative in the top two panels, whereas é_’y is positive in the bottom two panels. The top left
and right panels are evaluated at the given instances in time when B, (z) grows and decays, respectively. The bottom
two panels are a combination of both the growing and decaying phases with z. We keep the same line style and color

for each term, as shown in Fig. 13.

tion process of M, and R, is needed for a comprehen-
sive understanding.

In Fig. 18, we show the individual terms that appear in
the dynamical equation for M. Since M, changes sign
with spatial and temporal coordinates, we multiply M,

on both sides of the equation for 9;M,, to understand
the contribution of each term. The resultant individual
terms of equation for M,,0,M,, are shown in the left
panel of Fig. 18. Once we identify the dominant source
terms, we further demonstrate the components of such
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FIG. 16: (Color online) The generation mechanism of
(a)M,, and (b)R,, during the MRI growth phase is ex-
amined. The top panels illustrate the contributions ob-
tained from the x—y averaged equations for (a)M., and
(b)R... By identifying the source terms from the top
panels, we present the individual components contribut-
ing to M,, (bottom left panel) and R,, (bottom right
panel). The computations involve time averaging over
the interval ¢/To, = 5 — 5.5.

specific source terms in the middle and right panels of
Fig. 18. We see that the dominant source terms for M,
are the stretching terms: M,,0,U, and M,,0,U, (shown
in dotted light green/yellow). The most significant con-
tribution in the correlator M,,0,U, arises from k = z
(middle panel). For the correlator M.,,0U,, the dom-
inant contribution arises from k = z (rightmost panel).
The nonlinear three-point term and the terms associated
with the spatial gradient of mean magnetic fields act like
a sink here. In summary, M,, and M,, act in conjunc-
tion with 9,U, and 0,U, respectively to produce M,..

Next, we analyse the generation of R,.(z), so we plot
the individual terms that appear in R.,0;R.. equation
in the MRI growth and nonlinear regimes as shown in
Fig. 19. Three different panels of Fig. 19 correspond to
the three different instants of time at which the computa-
tions are performed: ¢/T, ~ 5 (left panel), t/Tom, =~ 50
(middle panel), and t/Top =~ 100 (right panel). It is
difficult to identify any specific source term for R, at
the initial phase from the left panel of Fig. 19. We see
that the dominant source term for R,, in the nonlin-
ear regime (middle and right panels) is the Coriolis force
term: 2QR,. (solid blue line). Hence, the twisting of
R, via the Coriolis force produces R, at a rate of 2Q.
The nonlinear three-point term (dashed red line) behaves
as the dominant sink for R,,. To complete the dynamo
cycle, we describe below how Ryz is produced.

Finally, in Fig. 20, we perform the z—y average anal-

ysis at three different instants of time: ¢/To, ~ 5 (left
panel), t/To >~ 50 (middle panel), and t/Tom, ~ 100
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FIG. 17: (Color online) The generation mechanism of
(a)M,, and (b)R,. during the MRI nonlinear phase is
examined. The top panels illustrate the contributions ob-
tained from the x—y averaged equations for (a)M., and
(b)R... By identifying the source terms from the top
panels, we present the individual components contribut-
ing to M,, (bottom left panel) and R, (bottom right

panel). The computations are performed at ¢/T,, = 20.

(right panel), to examine the generation of R,.. Similar
to R,., it is difficult to identify any specific source term
for R, at the initial phase (left panel). However, in the
nonlinear regime (middle and right panels), it is apparent
that the dominant source term for R, is the term with
mean magnetic field gradients (dotted magenta line), and
once again the nonlinear three-point term (dashed red
line) acts as a sink. Mathematically, the complete source
term for R, is expressed as (F,x0 B + F..0;B,). How-
ever, the contribution from the term szakBy is found
to be negligible. Instead, the sole contribution arises
from Fykﬁsz with & = y. This finding is illustrated
in Fig. 21 for two different times, ¢/T,,1, =~ 50 (left panel)
and t/To, =~ 100 (right panel).

In Fig. 22, we provide a schematic which summarizes
the chain of production leading to the rotation-shear-
current effect. At the magnetic end of the chain, the
term involving azimuthal mean field, B, leads to eventual
production of M, which is one part of the rotation-shear-
current effect. At the kinetic end of the chain, the vertical
mean field is involved in leading up to the production
of R,,, which is the other part of the rotation-shear-
current effect. Thus, the self-sustaining cycle of dynamo
is established connecting both the azimuthal and vertical
mean magnetic fields to correlators that are responsible
for the production of the radial mean magnetic field. In
this picture, the production of the vertical mean field has
not yet been delved into. We do so in the next section.
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FIG. 19: (Color online) The generation mechanism of R,.(z) in the MRI growth and nonlinear regimes. It shows the
individual terms that appeared in R,,0;R,. equation. The computations are performed at ¢/T,, ~ 5 (left panel),

t/Torn ~ 50 (middle panel), and ¢/To,1, ~ 100 (right panel).

E. Generation of Vertical Magnetic Fields

We have seen that the vertical mean-field, B, (z), arises
in the y—z averaged analysis due to the radial variation
of the azimuthal EMF, azs’y. Here, we discuss the terms
responsible for generating B, via &,. In the left panels of
Fig. 23, we show the individual terms of &, in the MRI
growth to the early saturation phase. To enhance visual
clarity, we have distributed the numerous terms of the
EMF across two left panels. The middle and right panels
of Fig. 23 illustrate the contributions from different com-
ponents associated with the terms proportional to the
respective field gradients. To understand the contribu-
tion of each term on the evolution of B, (as described
in Eq. 16b), we multiply B. on both sides 9,€, equa-
tion (i.e., after taking the radial gradient of Eq. 18). We
evaluate these terms at x = —0.15. The same color and
line style are used for each term, as indicated in Fig. 13.
Notably, we have utilized markers only for the most sig-
nificant curves.

The two crucial curves that determine the growth or
decay of the magnetic field over time are the EMF term
(represented by a dashed black line with star markers)
and B,O,B, (shown as a dash-dotted red line with tri-

down markers). Positive values of these terms indicate
the growing phase of B, (), while negative values suggest
a decaying phase. The dominant term responsible for the
growth of B, is the one proportional to 9;U. (depicted
by a solid green line with circle markers), where k = z
(refer to the bottom right panel of Fig. 23). Conversely,
three terms act as sinks in the evaluation of B,(x): the
term proportional to 9B, (shown as a solid blue line
with triangle markers) with k = x (see top right panel of
Fig. 23), the term proportional to 9yU,, (illustrated by a
solid orange line with square markers) with k = z (refer
to the bottom middle panel of Fig. 23), and the nonlinear
three-point term (displayed as a solid olive line). Conse-
quently, these terms contribute to the energy reduction
of B,(z). It is worth noting that the terms proportional
to B; have negligible role on the evolution of B, (z).

Next, we investigate the local behavior of the terms
appearing in the azimuthal EMF during the MRI growth
phase by taking time averages from t/to;, = 5 — 5.2.
Such a study can explain how the y—z averaged field
B.(x) is generated locally via the radial variation of
&,. To understand the individual contributions of these
terms to the evolution of B, (), we again multiply B, (z)
on both sides of the 8x5_y equation (i.e., after taking
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term, F‘ykﬁkéz, that appeared in Fig. 20 for Ryz evalua-
tion at t/Ten =~ 50 (left panel), and ¢/T ~ 100 (right
panel). The other term szakBy is negligible.

the radial gradient of Eq. 18), as described in Eq.16b.
In the left panels of Fig. 24, we present the variations
of the individual terms of Bzawéy as a function of x.
Similar to Fig. 23, we distribute the numerous terms of
the EMF across two left panels, while maintaining con-
sistent line styles and colors for each term. We find
that the field B,(z) experiences growth in the regions
z~—0.4— —0.25 and x ~ 0.1 — 0.3. Again, the domi-
nant term responsible for the growth of B, (x) is the one
proportional to 9, U, (depicted by a solid green line with
circle markers), where k = z (see the bottom right panel
of Fig. 24). Conversely, the term proportional to 9,U,
(illustrated by a solid orange line with square markers)
with k = z (refer to the bottom middle panel of Fig. 24)
acts as the dominant sink term.

Finally, we investigate the dynamo mechanism un-
derlying the generation of y—z-averaged fields B, (z) in
the nonlinear regime of MRI. Our focus is to determine
whether the terms that were responsible for the growth of
large-scale fields continue to play a role in the nonlinear
regime. In Fig. 25, we perform a y—z-averaged analysis at
t/torb = 97 to examine the behavior of individual terms
in the Bzaxf‘fy equation as a function of x. To maintain
consistency, we use the same line styles and colors for
each term as indicated in Fig. 24. The two overlapping
curves in the left panel of Fig. 25, one from the EMF
term and the other from B.9;B., provide insights into

the growth or decay of the field B, (z) with respect to
. Remarkably, the overall results remain consistent in
the nonlinear regime. The term proportional to 0;U.
(depicted by a solid green line with circle markers) with
k = x (see the bottom right panel of Fig. 25) continues
to be the dominant term responsible for the growth of
B.(z). Conversely, the decay of B,(z) is primarily at-
tributed to the term proportional to 9B, (shown as a
solid blue line with triangle markers) with k = z (see the
top right panel of Fig. 25).

In summary, the growth and the nonlinear saturation
of the y—z-averaged field B.(z) are driven by the radial
variation of the azimuthal EMF, 5‘mgy. In particular,
the term proportional to 9,U, of the EMF &, plays a
dominant role in generating B, (). The proportionality
coefficient of this term depends on the shear rate, rota-
tion, and specific components of the Faraday tensor, as
given by (see Eq. 18)

1 1 _
— 7Fym +

5 |G+ g Pl (19)

1
q
We refer to this dynamo mechanism for the generation
of B,(x) as the “rotation-shear-vorticity effect.” It is im-
portant to note that this mechanism is fundamentally
distinct from the traditional cross-helicity effect [39, 42],
where the turbulent cross-helicity (defined as the cross-
correlation between the turbulent velocity and magnetic
field, (u - b)) serves as the transport coefficient coupling
with the large-scale vorticity. In the rotation-shear-
vorticity effect, the off-diagonal components of the Fara-
day tensor, specifically Fy, and F,, play a primary role.

IV. DISCUSSION

The primary objective of this work is to gain a better
understanding of the physical processes involved in sus-
taining MRI turbulence and dynamo in accretion disks.
Despite many theoretical and computational studies, the
fundamental principles behind these phenomena remain
unclear. One of the main reasons for this is that the
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mean-field dynamo and angular momentum transport
problems have traditionally been treated independently
[48, 49]. The transport theory for angular momentum has
not taken into account the evolution of large-scale mag-
netic fields [19-21], while the mean-field dynamo theory
has not considered transport dynamics [24, 63]. In ad-
dition, both theories have ignored the feedback from the
evolution of mean velocity fields. However, direct numer-
ical simulations have shown the existence of a large-scale
dynamo associated with velocity and magnetic fields si-
multaneously in MRI-driven turbulence [11]. To better
understand the exact nature of these interactions, one
needs to develop a unified mean-field theory for MRI.
With this aim, we construct a single coupled model for
turbulent accretion disks and perform direct statistical
simulations in a zero net-flux unstratified shearing box
using statistical closure approximations.

Mean-field dynamo theory is a widely used framework
for examining the in situ origin of large-scale magnetic
field growth and saturation. The electromotive force,
a correlation between fluctuating velocity and magnetic
fields, is responsible for dynamo action. In mean-field
theories, the EMF is typically assumed to be a linear
function of the mean magnetic field and its spatial deriva-
tives, with the proportionality coefficients usually treated
as tensors. However, this assumption may not be suffi-
cient to fully capture the complex physical processes in-
volved in magnetic field generation and sustenance. Sev-
eral studies have shown that an additional term propor-
tional to the spatial derivative of the mean velocity field
enters the EMF equation, which can lead to rapid growth
of mean magnetic fields [62]. Similarly, whenever an
additional term participates in the EMF equation, the
dynamics of magnetic field growth and saturation can
change dramatically. Therefore, it is crucial to properly
account for the effect of all contributions in the EMF

equation to fully understand the physics of magnetic field
generation and sustenance.

Here, we identify a novel possibility for large-scale
magnetic field generation in unstratified MRI-driven tur-
bulent plasmas: the rotation-shear-current (RSC) effect.
The mechanism arises through an off-diagonal turbulent
resistivity 7., which has a favorable negative sign to
cause mean-field dynamo action, rather than being posi-
tive for diffusion. The basic idea is that in the presence
of shear and rotation, small-scale kinetic and magnetic
fluctuations produce 7,, in the following form (the coef-
ficient of 9, B, in Eq. 18)

1 1

PR 12—¢q
This is for the first time we have identified the exact ex-
pression for 7,,. The respective correlators associated
with magnetic and kinetic fluctuations are M., and R..,
which are always positive. The factor ‘two’ arises due
to rotation via the Coriolis force. Hence, for a Keple-
rian shear flow (i.e., ¢ = 1.5), both magnetic (n},) and
kinetic () contributions to the RSC effect have favor-
able negative sign. It is important to note that the term
associated with the RSC effect is distinct from the € x J
or Radler-effect [23, 43]. Also, the RSC effect differs fun-
damentally from the traditional shear-current (SC) effect
in which rotation is absent [36, 37]. The SC effect has
been controversial, with mutual and seperate disagree-
ments among theories and simulations. Below we discuss
various conflicts associated with SC effect.

The traditional SC effect is a potential nonhelical large-
scale dynamo driven by off-diagonal turbulent resistivity
Nyz in the presence of a large-scale velocity shear with-
out any rotation. A negative sign of 7, is necessary for
coherent dynamo action by the SC effect. However, it re-
mains a matter of debate whether the contributions from

(20)

_ 1_
ny$ = Mzz + ngz
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FIG. 23: (Color online) The left panel shows the terms from the radial variation of the azimuthal EMF (equation 18)
responsible to generate the y—z averaged field B, (x) in the MRI growth to initial saturation phase. These are evaluated
at x = —0.15. To understand the contribution of each term to the evolution of B,(z), we multiply B, (x) on both
sides of the 9,€, equation (see, equation 16b). The dash-dotted red curve is for B,9;B,, the dashed black curve is
for the corresponding EMF term, the solid grey curve is for the term proportional to 8kBy, the solid blue curve is for
the term proportional to 9y B,, the solid orange curve is for the term proportional to Jy Uy, the solid green curve is
for the term proportional to 9,U., the solid yellow curve is for the nonlinear three-point term, and the solid purple,
brown, and pink curves correspond to the terms proportional to —, y—, and z—components of B-fields, respectively.
The middle and right panels are for the terms proportional to different components of the field gradients: the term
proportional to BkBy (top middle panel), the term proportional to 9y B, (top right panel), the term proportional to
O,Uy, (bottom middle panel), and the term proportional to 9,U, (bottom right panel).
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generate the y—z averaged field B,(x) in the MRI nonlinear phase. This is evaluated at t/to., ~ 97.

the turbulent kinetic and magnetic parts to n,, have a
preferred sign or not, and which one dominates. Among
analytical works, those employing a spectral-7 closure
found that both nzx and 7, have favorable negative signs
to cause dynamo action [36, 37]. In contrast, the second-
order correlation approximation [64, 65] and quasi-linear
calculations [66, 67] disagreed with the existence of the
kinetic SC effect. For magnetic shear-current (MSC) ef-
fect, the analytical calculations using second-order corre-
lation approximation agree with previous spectral-7 cal-
culations that 77230 has favorable negative sign, and the
magnetic part substantially dominates over the kinetic
part [68]. Zhou and Blackman [69] resolve some of these
theoretical discrepancies (atleast at low to moderate Re
~ 10) by showing that the kinetic contribution 7, is
sensitive to the kinetic energy spectral index and can
transist from positive to negative values with increasing
Re, whereas the magnetic contribution nzw remains al-
ways negative. However, numerical simulations do not
fully agree with theory, and sometime mutually contra-
dict. There are broadly two methods employed to de-
termine the turbulent transport coefficients from simula-
tions: the test-field method and the projection method.
In kinetically forced quasi-linear simulations using pro-
jection method, it has been found that 7, is positive
with only shear, and negative when a Keplerian rotation
is added [70]. Conversely, nonlinear test-field method
in MHD burgulence (i.e., ignoring the thermal pressure
gradient) with kinetic forcing has reported a negative Ny
for the non-rotating case, but did not explore the case in-
cluding rotation [71]. For magnetic contributions, mag-
netically forced quasi-linear simulations using projection
method found that 7721 < 0 either with or without Ke-
plerian rotation [70]. Unfortunately, nonlinear test-field

method in MHD burgulence with magnetic foring found
that 7%, > 0 for non-rotating shearing cases [71].

To resolve the above mentioned discrepancies, we pro-
vide here the exact expressions for 7,, (Eq. 20) which
describes the role of rotation and shear parameters to
the contributions of kinetic and magnetic parts. As we
have already mentioned that for a differentially rotat-
ing Keplerian flow (as in the case of MRI turbulence)
both nzx and n,, have favorable negative signs to cause
dynamo action. Now, in the absence of rotation, rel-
evant to the traditional SC effect and the MSC effect,
Nye Teduces to the form as ny, = — (R.. — M..) /qp.
We see that the kinetic contribution 7, has a favorable
negative sign, whereas the magnetic contribution has a
wrong sign for dynamo action. Interestingly, they will
exactly cancel each other in the limit of M., ~ R..,
which will make the SC effect inoperative (i.e., 7y, ~ 0).
It supports the conclusions of Ref. [71] that there is no
evidence for MSC-effect-driven dynamo in magnetically
forced, non-rotating MHD burgulence, but kinetic SC ef-
fect has favorable negative sign when forced kinetically.
It also explains the results associated with non-rotating,
unstratified, compressible MHD simulations with driven
turbulence using a compressible test-field method that
Nyz to be slightly negative or positive but statistically
not different than zero, concluding no evidence of coher-
ent SC effect [50].

In addition to forced turbulence, there is growing evi-
dence for the presence of the RSC effect in unstratified,
zero net-flux shearing-box simulations of MRI-driven tur-
bulence. Both finite volume code [10] and moving mesh
code [12] simulations have observed a large-scale dynamo
with a negative value of 7,,. These findings contrast
with the results of Ref. [27], who used a smooth parti-



cle hydrodynamics code and observed slightly positive or
nearly zero values of 7,, in their zero net-flux, unstrat-
ified simulations. The discrepancy can be attributed to
the significantly weaker mean fields in their simulations,
which can impact the manifestation of the RSC effect.

Next, we delve into the mechanisms by which the corre-
lators associated with fluctuations drive the RSC effect.
As we discussed earlier, the correlators involved in the
RSC effect are M,, and R,., which correspond to the
magnetic and kinetic aspects, respectively. We have dis-
cussed how these correlators interact with shear and rota-
tion to produce off-diagonal turbulent resistivity 7,, with
the appropriate sign for the large-scale dynamo. Under-
standing the generation of these correlators in the con-
text of self-sustained MRI-driven turbulence is crucial.
We uncover a significant revelation: the presence of a
large-scale vorticity dynamo is essential for their produc-
tion. Notably, the dominant contribution arises from the
mean vertical velocity fields. Moreover, at the magnetic
end of the chain, the term involving azimuthal mean mag-
netic fields plays a significant role in generating M,,—the
magnetic part of the RSC effect, while at the kinetic end
of the chain, the term involving vertical mean magnetic
fields takes charge in producing R, —the kinetic part of
the RSC effect (see, Fig. 22 for a more comprehensive de-
piction). Consequently, a self-sustaining dynamo cycle is
established, linking the azimuthal and vertical magnetic
fields to the correlators that give rise to radial magnetic
fields through the RSC effect.

Finally, we address the generation of vertical magnetic
fields arising in the y—z-averaged analysis. For a given
initial vertical field, the MRI can be initiated locally.
However, in the absence of any large-scale dynamo ac-
tion, the resulting MRI turbulence tends to disrupt the
original vertical field, potentially leading to the cessation
of the MRI. While considerable research on MRI dynamo
mechanisms has focused on the generation of horizontally
(z—y) averaged fields, the persistence of large-scale verti-
cal magnetic fields in MRI-driven turbulence remains an
intriguing question. Our findings from the y—z-averaged
analysis are consistent with results from global cylindri-
cal MRI simulations [46] and local shearing box simula-
tions [11], where the large-scale fields arise entirely from
the EMF. In particular, the vertical mean field is driven
by the radial variation of the azimuthal EMF. By formu-
lating a general expression for the EMF, we have identi-
fied a novel dynamo mechanism responsible for the gener-
ation of large-scale vertical magnetic fields, referred to as
the rotation-shear-vorticity effect. This mechanism criti-
cally depends on the presence of a large-scale vorticity dy-
namo. Specifically, the azimuthal EMF contains a term
proportional to the radial gradient of the vertical mean
velocity field, which drives this dynamo mechanism. The
exact form of the proportionality coefficient is given in
Eq. (19). This coefficient arises from the interaction of
the zy- and yx-components of the Faraday tensor with
rotation and shear.

Overall, these new findings open up exciting avenues
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for the advancement of mean-field dynamo theory and
invite further exploration.

V. CONCLUSIONS

In this paper, we investigated the phenomena of MRI
turbulence and dynamo in a zero net-flux unstratified
shearing box, employing novel DSS methods. Our main
objective was to develop a unified mean-field model
that combines the traditionally decoupled problems of
angular-momentum transport and the large-scale dy-
namo in MRI-driven turbulent flows, with specific em-
phasis on the standard Keplerian accretion disks. We
consider the dynamics of turbulent stresses, including the
Maxwell, Reynolds, and Faraday tensors, together with
the behavior of large-scale velocity and magnetic fields,
in order to understand the sustaining mechanisms of MRI
turbulence without any external driving force. To accom-
plish this, we employ various high-order closure schemes.
The three-point correlators are closed using a statisti-
cal closure model inspired by the CE2.5 approximation,
while a two-scale approach is utilized to model second-
order correlators involving the spatial gradient of a fluc-
tuating field. Our principal findings can be summarized
as follows:

(1) The outward transport of angular-momentum oc-
curs through positive total stress, Wzy = ny — Mmy,
where Mmy < 0 and ny > 0. The dominant contribu-
tion to the total stress arises from the correlated mag-
netic fluctuations, rather than from their kinetic coun-
terparts, i.e., szy > Rzy, as expected. The generation
process of these stresses involves intricate interactions in-
volving shear, rotation, correlators associated with mean
fields, and nonlinear terms. A schematic overview of
the findings is summarized in Fig. 4. The stretching of
M., through shear gives rise to Mxy, which, is further
stretched by shear to produce M,,. The large-scale mag-
netic field, predominantly B, acts in conjunction with
the correlator (b,0yu,), leading to the generation of M,
(which is essentially the tangling of large-scale field lead-
ing to small-scale fields). Regarding the Reynolds stress,
the Coriolis force is responsible for generating R,, from
Rzy, and Rmy from Ryy. Interestingly, the nonlinear in-
teractions between Myy and Ry_y via three-point terms
contribute to the formation of Ry, from M,,. Another
significant source term for Ryy is the term proportional to
the radial gradient of the mean azimuthal magnetic field.
Therefore, the turbulent transport critically depends on
the presence of large-scale magnetic fields.

(2) For the large-scale magnetic field dynamo, we an-
alyzed the individual terms in the mean field induc-
tion equation using both z—y and y—2z averaging and de-
termined their contributions to the generation of mean
fields. Our findings align well with those obtained from
DNS [7, 11]. With z—y averaging, the azimuthal EMF
generates the radial field, which, in turn, drives the az-
imuthal field through the Q-effect. The radial EMF ex-



hibits a sink effect, resulting in a decrease in the en-
ergy of the azimuthal field. In the case of y—z averaging,
the large-scale fields originate entirely from the respective
EMF. Specifically, the azimuthal field arises from the ra-
dial variation of the vertical EMF, while the vertical field
emerges from the radial variation of the azimuthal EMF.

(3) To identify the relevant dynamo mechanisms, we
constructed the EMF for an MRI-driven system. The
EMF is expressed as a linear combination of terms pro-
portional to mean magnetic fields, the gradient of mean
magnetic fields, the gradient of mean velocity fields, and
a nonlinear term. The proportionality coefficients depend
on shear, rotation, and statistical correlators associated
with fluctuating fields. Importantly, this EMF expres-
sion arises naturally from our model rather than being
an ansatz. By analyzing the general EMF expression, we
identify two crucial dynamo mechanisms—the rotation-
shear-current effect and the rotation-shear-vorticity ef-
fect—that are responsible for generating the radial and
vertical magnetic fields, respectively. We have provided
explicit expressions of the corresponding turbulent trans-
port coefficients, in the nonperturbative limit. Notably,
both mechanisms rely on the presence of large-scale vor-
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ticity dynamo. It is important to note that both the
kinetic and magnetic components of the rotation-shear-
current effect have favorable signs for driving a dynamo
mechanism. A schematic overview of the rotation-shear-
current effect is presented in Fig. 22.
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Appendix A: The Electromotive Force

In this section, we provide a comprehensive derivation of the electromotive force (EMF). We start by presenting
the evolution equations for all the components of the Faraday tensor:

DiF,, = W0Fy, + (Fardylly — Fradi ) + By [<u$aku.t> 1 0eOkbe) | L 0B, — R0y + T
[0p p "
DiFyy = —qQFys + 20, + (FurdhUy — Frydhls) + By { waBhty) + L i’ipb 2| % (V04 By — RurhBy) + T,
(A2)
D/F,. = 2W0F,. + (FurdhU. — Frodil,) + By [ (usps) + L0 2 L (0La0iB, - RadiB) + TE.
(A3)
Dify= (2 Qs+ (Fpdkls — Fuudhl,) + By [ uy By} + 2 Z’f w4  (WLk0uB, - RduB) + T
(A4)
DiFyy = —(2 = )y, — qQF,s + (FyudhUy — FrydiUy) + By [<uyakuy> + W] + % (M0 B, — RydcB,)
+ T, (AD)
f 0 ) R
DiFy. = —(2—q)QF,. + (Fy0nU. — Fy,.0,Uy) + By {<uyakuz> + Mopy} + 5 (M.x0kBy — Ry B.) + .5,
(A6)
D,F., = (ForOkUs — FiaOU.) + By, |:<uzakuw> + %} + % (MykOkB. — RoxOkBy) + T,

(A7)
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where, we have absorbed the advection terms within the operator D, = 0, — ¢Qz0, + UiOk. The right-hand side of
the equations consists of five different types of terms: those proportional to the gradients of the mean velocity (9;,U;),
terms proportional to the mean magnetic field (B;), terms proportional to the gradients of the mean magnetic field
(0x B;), nonlinear three-point terms (7;%'), and interaction terms arising from the Coriolis force and background shear.
It is worth noting that our approach deviates from existing studies as we utilize such interaction terms to construct
the EMF.

Our primary focus is on determining the azimuthal component of the EMF, denoted as &, = (F., — Fj.). To derive
&,, we multiply Eq. (A6) by ¢ and Eq. (A8) by (¢ — 2), and subsequently combine them. After conducting some
algebra, we arrive at the following resulting equation:

thFyz + (q - 2)Dthy = Q(2 - q)Q(Fzr - Fzz) + {quk + (2 - q)Fky} akUz - {quz + (2 - Q)sz} 8kUy
1 _ _ _ 1, - _ _
+ ; {quk + (2 - q)Rzk} akBy - ; {qRyk + (2 - q)Myk} asz
<bzakby> <by8kbz>

+ By {q ((uyakuz> + ) ~2-q) <<uz8kuy> - ) } + 7y,

(A10)
Hop Hop

where, T, = q7_;f: —(2- q)'Y_;Z represents the contribution arising from the three-point terms. By further algebraic
manipulation, we obtain the expression for é_'y as follows:

5 & -1

- m {_thFyz + (2 - Q)Dtpzy} + {quk + (2 - q)Fky} akUz - {quz + (2 - Q)sz‘} 8kUy

1 . _ _ 1, - _ _
+ ; {quk + (2 - q)Rzk} akBy - ; {qRyk + (2 - q)Myk} aIch

=8 o (o) + B2 o) (uory) + LAY ],

. (A11)
Hop Hop

Similarly, to derive &£,, we combine Eq. (A1) and Eq. (A5). After conducting some algebra, we arrive at the following
resulting equation:

- (DtF:r:v + DtFyy) + (Fa:k - Fka:) akUz + (Fyk - Fky) 8/6[71/

+ 2 (Myk — Ror) OBy + 5 (Myr — Ryr) 0k By

1
p

+ B {(aOku) + (wyOhy) + 7 (b2 0be) + (000D} + |, (A12)

where, T, = T.I + ’77; represents the contribution arising from the three-point terms.

(

Appendix B: The Statistical Closure Model For
Three-point Correlations

adopt a similar approach to the CE2.5 model, along with
the mixing length concept, to express the three-point cor-
relators in terms of two-point correlators. The procedure

The three-point correlation term that appeared in the involves the following steps:

evolution equation for the Maxwell stress is given by
TM = (bibOyu; + bibOru; — ugdy(biby)) . (B1)

Due to the presence of several correlations between three
fluctuating quantities and the involvement of spatial
derivatives, applying the CE2.5 closure model to this
term becomes extremely challenging. Therefore, we

First, we neglect terms involving mean quantities in
the equations for the fluctuating velocity and magnetic
fields. It is important to note that the pressure fluctu-
ation is also neglected in this specific analysis, and the
pressure-strain nonlinearity is treated separately. Thus,
the contribution of the nonlinear terms to the genera-
tion of fluctuating velocity and magnetic fields can be



estimated as:

Ui = TaJ(M1 — Rz]) =T (bJa]bZ — ujajui) 5 (B2)

and

7

bi ~ T@j(FZ‘j — Fji) =T (bjajul — ujﬁjbz) 5 (B3)
where 7 represents the correlation time scale of the tur-
bulence, and we consider it to be ~ 1/ in the context
of rotating disk turbulence.

Second, by selectively substituting these fluctuating
quantities, we express the three-point correlators in terms
of four-point terms:

T = 7((bm Ot — wmObi)bre Oy
+ (bmOmj — U O b ) br O

- (bmambk - umamuk)ak(bzbjﬁ (B4)

To simplify our analysis, we introduce length scales to re-
place two spatial derivatives present in the fourth-order
correlator. One derivative, originally appearing in the
exact expression for the three-point term (Eq. B1), is re-
placed by the length scale L, which represents either the
vertical length of the simulation box or the disk scale
height, typically of the order c¢s/Q. The other spatial
derivative arises from the fluctuating fields (Eqs. B2 and
B3). To replace this derivative, we utilize a correlation
length scale that accounts for the distance an eddy can
traverse during the correlation time 7 ~ 1/Q. We adopt
three different correlation lengths for the gas, magnetic,
and cross fields, denoted as lg ~ VR/Q, Iy ~ VM /Q,
and Ip ~ vV MR/, respectively. By assuming approx-
imate randomness, a fourth-order correlator can be re-
duced to a product of second-order terms based on the
contraction of indices with those of the derivative indices.
This reduction allows us to rewrite Eq. (B4) in a simpli-
fied form, yielding:

T = % l (<bmbm> (uiug) — W@MO

I

b bom

i ({at
I

(ujug) — <umbm><bjui>>

lp

b bm U Um
- (<ZM><bibj + bjbi) — <Z7R><bz‘bj + bjbi>>

(B5)
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Alternatively, we can express it as:

— T bmbm bmbm
7;;‘4:3 5! » ><uiu]->*2< Inr ><bibj>
I zw(bibﬁ — M(uibj +uzbi)|.  (B6)
lr lp

Finally, we introduce positive dimensionless constants c;
to account for the propotionality constant in the previ-
ous approximations. These constants are typically of the
order of unity. The final expression for the nonlinear
three-point term becomes:

Ta = 1 200V MRy — 205/ ML, — 203V,

- 64\/5 (Fij + Fji)

(B7)

Note that, in the derivation from Eq. (B6) to Eq. (B7),
the sign of the term associated with the constant c3 has
been reversed based on the physical arguments discussed
in the main text. We follow similar procedures to derive

closure models for the nonlinear three-point terms 7%

ij
F
and 7;5.

Appendix C: Closure Approximation for Second-Order Correlators Involving the Spatial Gradient of a
Fluctuating Field: A Two-Scale Approach

In this section, we employ the two-scale approach [54] to determine the second-order correlators which involve the
spatial gradient of a fluctuating field. These terms appear on the right-hand side of the stress equations (Eqgs. 9-11).
Specifically, we focus on terms such as Bm<ui5‘muj>, B, (u;0mb;), amongst others. To make progress in our analysis,
it is necessary to find a way to estimate or “close” these terms.
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To begin, let us derive Y;; = By, (u;0mu;). We consider the correlation tensor (u;(x1)u;(x2)) of two vector fields
u; and uj, where x; and z2 denote two points in space but both fields are taken at the same time. By employing
Fourier transformation and the two-scale approach, we can express the correlation function as follows:

(u(x1)u;(x2)) = /<ai(kl)ﬂj(k2)> exp{i(ky X1 + kyXa)} d*ky d’ky
= / Ri;(k, X) exp(ik-x) d°k , (C1)
where,
Ris (%) = [ (sl + K/2)i5(-k -+ K/2) exp(KX) K
and X = (x1+x2)/2, x =x1—x2, K =k;+ko, k = (k; —k3)/2. Here, X and K correspond to the large scales, while

x and k correspond to the small scales. We introduce the correlation tensors for velocity and magnetic fluctuations,
Rij (k, X), MU (k, X), and Fij (k, X), defined as:

Rij(k, X) = ®(i;, 4; k, X) = /(ﬂi(k + K/2)i;(—k + K/2)) exp(iK-X) d*K , (C2)
Mij(k,X) = ®(b;, bj; k, X) = / (bi(k + K/2)bj(—k 4+ K/2)) exp(iK-X) d°K , (C3)
Fyj(k, X) = ®(,, bj; k, X) = /(@Z—(k +K/2)b;(—k + K/2)) exp(iK-X) d°K . (C4)

We want to compute Y;;(z = 0) = [Y;;(k, X) d®k. From the definition of Fourier integrals, we can write the (B-V)u
term in Fourier space, as

Si(u,B;k) = ikp/ﬁi(kf Q)B,(Q)d*Q .

Y5k X) = /(ﬁi(k +K/2)S;(u,B; —k + K/2)) exp(iK - X) d®K
= i/(—kp + K, /2)(u;(k+ K/2)u;(-k + K/2 — Q))ép(Q) exp(iK - X) d* K d*Q) . (C5)
Now, we change the integration variable K into K — Q, denoted by K’. In this way, and using Qpép = 0, we obtain
Yi;(k,X) = i/(fkp + K /2)(a(k + Q/2 + K'/2)it;(—k — Q/2 + K'/2)) B,(Q) expli(K' + Q) - X] K’ d*Q .

Using the definition of R;;(k,X), given in equations (C2), we have

k+Q/2,X)
X,

Yk X) = | [z‘kpRz-j(k £Q2X) 4] (aR“( )] B,(Q)exp (iIQ - X) d*Q

The Taylor expansion (since |Q| << |k|) gives

OR;;(k,X)

1

) Qi +0(Q%) .
This yields
Vi X) = [ [-ib {030+ 5 (P ) @ 4 (20X | By ew @ x)ae.
Yk, X) ~ { —i(k-B)+ %(1’3 : V)}Rij(k, X) — kyRiji(k, X) By, |

where R;j; = 30R;;/0k;, B; j = V;B;, with V stands for §/0X. Finally, we can write

_ _ 1 - —
Vislo=0) = [ Yi(k X) &k = ~Byy [ ik iy(0)K + 5(B- V)R (C6)
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_ The calculation can be simplified by excluding B from the Fourier integrals. Consider the computation of Wij =
By (u;0mb;) = By Wijm, where Wi, = (4;0,b5). So, we have

Wijm(k, X) = z’/(—km + K. /2)(t;(k + K/Q)Bj(—k +K/2)) exp(iK - X) d*°K ,

1
= —ikn, Fij(k, X) + §VmFij(k,X).

_ _ 1 _ _
Wiz =0)= By, / Wijm(k, X) d°k = —Bm/ikmFij(k)dSk + 5(B V). (C7)

Approximating the first term on the right-hand side of Eq. (C7) as -Tr(B)I~1F;;, with I=! = s(Q2/\/B2/uop) and s

being a constant, we arrive at:

%(1‘3 V)F. (C8)
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